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The mean field thermodynamics of a system of N gravitationally interacting particles confined in some
bounded plane domain { is considered in the four possible situations corresponding to the following two
pairs of alternatives: (a) Confinement is due either to a rigid circular wall 3Q or to an imposed external
pressure (in which case 842 is a free boundary). (b) The system is either in contact with a thermal bath at
temperature T, or it is thermally insulated. It is shown in particular that (i) for a system at given temper-
ature T, a globally stable equilibrium (minimum free energy or minimum free enthalpy state for 9 rigid
or free, respectively) exists and is unique if and only if T exceeds a critical value T., and (i) for a
thermally insulated system, a unique globally stable (maximum entropy) equilibrium exists for any value
of the energy (rigid dQ) or of the enthalpy (free 3(2). The case of a system confined in a domain of arbi-
trary shape is also discussed. Bounds on the free energy and the entropy are derived, and it is proven
that no isothermal equilibrium (stable or unstable) with a temperature T < T, can exist if the domain is

“star shaped.”

PACS number(s): 05.20.Gg, 05.20.Dd, 95.30.Sf

1. INTRODUCTION

One-dimensional (1D) and two-dimensional self-
gravitating systems are interesting “toy models” which
are quite useful for testing our ideas about the statistical
mechanics of systems governed by long-range attractive
interaction. They have been yet the object of several in-
vestigations, concerning in particular the existence of
equilibrium states, and the possible relaxation to an equi-
librium.

As for the existence of equilibrium states, a few results
have been obtained in the framework of “exact” equilibri-
um statistical mechanics (in which one considers a finite
number N of particles). For instance, it has been shown
[1,2] that, for a system confined inside a box, a micro-
canonical description (at any energy) and a canonical one
(but only above a critical temperature in 2D) are possible
without the need of introducing stabilizing cutoff (this is
in contrast with the 3D case; see, e.g., Ref. [2] for a re-
view), and the exact equations of state have been derived.
For an unconfined 1D system with a fixed center of mass,
both descriptions have also been proven to hold. More-
over, the associated one-particle distribution functions

V) have been computed in closed form [3], and the spa-
tial correlations between a pair of particles have been
evaluated [4].

An important point which emerges from these studies
(and which is physically quite obvious) is the nonexten-
sivity of the usual thermodynamic functions (energy,
etc.), which precludes the existence when N — o of the
standard thermodynamic limit (i.e., the infinite volume
limit at constant density and energy per particle). But
simple scaling considerations suggest the existence of an
inhomogeneous mean field thermodynamic limit when
N — o at constant volume under imposed appropriate
scalings—in the canonical ensemble, for instance, the
temperature may be taken to increase like N (to compen-
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sate for the increase in the strength of the interaction of
one particle with the other ones), while the energy scales
like N2. This view can be checked to be correct for 1D
unconfined systems [3,4]. In that case, it can be shown
explicitly indeed that both the microcanonical and
canonical f}) approach at large N a stationary Maxwelli-
an solution to Vlasov’s equation, as expected a priori on
intuitive grounds. For 2D systems, the calculation of f’
has not been achieved, and an exact direct determination
of a mean field state is not possible. The existence of the
latter in the canonical ensemble, however, has been
rigorously proven most recently by Kiessling [5] and by
Caglioti et al. [6], who extended to the case of singular
logarithmic interactions some earlier work by Messer and
Spohn [7]. They showed in particular that, above a criti-
cal temperature T, (below which the partition function is
not defined, see above), the one particle function con-
verges to the Maxwellian solution f to Vlasov’s equation
which minimizes globally the mean field Helmholtz’s free
energy (or to a superposition of such solutions, if several
do exist). Actually, the mean field equation satisfied by f
was considered earlier—taking its validity for granted—
by Katz and Lynden-Bell [8] in their phenomenological
study of a system enclosed in a circular domain and
maintained in contact with a heat bath at temperature T.
They were able to prove (however, by restricting their at-
tention to the only cylindrically symmetric functions f)
that an equilibrium state minimizing locally the
Helmholtz’s free energy exists (and is unique) when
T >T,, the value of the critical temperature thus emerg-
ing also naturally from this simple macroscopic ap-
proach. Some considerations on the mean field limit have
also been reported in Refs. [9,10].

The problem of the approach towards equilibrium has
been considered by many authors for 1D systems from
both the analytical [11] and the numerical points of view
[12]. All these studies seem actually to indicate that
there may be in general some degree of persistence of the
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correlations when a 1D system evolves and that conse-
quently relaxation to equilibrium is possibly somewhat
incomplete. The case of 2D systems has not yet been
considered in details owing to numerical difficulties. But
it can be hoped that precise 2D codes will become avail-
able in the near future, and, for comparison purposes, it
will be certainly quite interesting at that time to know the
equilibrium states to which a system may possibly relax.

It is the aim of this paper to develop in the framework
of the phenomenological mean field approximation a cal-
culation of these states, thus assumed to be describable by
a one-particle distribution function which is a solution to
Vlasov’s equation globally minimizing (or maximizing)
the thermodynamic potential appropriate to the external-
ly imposed constraints. As for the latter, we shall consid-
er here systems which are either in contact with a heat
bath or thermally insulated, and are confined either by an
external pressure or by a circular boundary (we shall also
discuss the case of a boundary of arbitrary shape, but
only briefly to avoid going into too much mathematical
details). Note that for a box-confined system at a given
temperature (a case also investigated in Ref. [5], but by
methods different from ours), we are guaranteed by the
recent results described above that a state minimizing
globally the free energy (the appropriate potential here)
is, at least if it is unique, an exact asymptotic mean field
state. For the three other situations, there are not yet
mathematical results characterizing rigorously the mean
field states, but it seems quite likely that the states we
shall determine, insofar as they are unique, are also
asymptotically exact.

It is worth noticing that the problem considered here
has some strong formal connections with that of the 2D
statistical equilibrium of either an ideal fluid [6] or of a
current-carrying magnetized plasma [13] (this last con-
cept has been introduced in Ref. [14] and is useful in both
laboratory and cosmical contexts). In all these cases
indeed, one is led to a so-called Vlasov-Poisson-Emden
equation for a potential (see Ref. [15] for a review of
some of the properties of this equation). There is an im-
portant difference, however, in the nature of the bound-
ary conditions which have to be imposed on the relevant
potential. For gravitational problems, we fix a condition
only at infinity (physically, there is no gravitational
screens, and a box can only confine particles, not interac-
tions), while in the other problems referred to above, the
potential is prescribed to take given values on the bound-
ary (in the magnetostatic problem, for instance, this cor-
responds to the fact that the magnetic flux distribution is
kept fixed by the conducting wall).

The paper is organized as follows. In Sec. II, we list
the assumptions of the model and give a precise state-
ment of the problems we want to consider. In Sec. III,
we introduce two functional transforms which will be of
repeated use hereafter. In Secs. IV and V, we consider a
box-confined system in contact with a thermal bath and
thermally insulated, respectively. The case of a pressure-
confined system (in the two previous thermal situations)
is treated in Sec. VI. Results are summarized and com-
pared with those known for a 3D system in the conclud-
ing section, Sec. VII.
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II. STATEMENT OF THE PROBLEM
A. Assumptions

We are interested in a plane system constituted of N
particles of mass m interacting through their gravitation-
al field (equivalently, we can think of the system as being
made of N homogeneous parallel rods embedded in the
3D space R2). For convenience, we shall work here only
with dimensionless variables—masses, lengths, velocities,
energies, temperatures, and pressures being normalized to
m, Ly, Vo:=(Gm)'?, Eg:=mV}=Gm? To:=mV3k !,
and po:=kT,L 2 respectively, where L is some arbi-
trarily chosen quantity, G is the gravitational constant
appropriate to the model (G is dimensionally related to
the usual Newtonian constant Gy by [G]=[Gy][L]™ ),
and k is the Boltzmann constant.

We assume the following.

(a) In the plane R2:={r}, the system is confined either
by a rigid regular curve 9(2 limiting a bounded connected
domain () or by a given external constant pressure P.

(b) The system is either maintained in contact with a
thermal bath at temperature T or it is thermally insulat-
ed.

(c) A state of the system is completely characterized by
a single-particle distribution function f (r,v) (v is the ve-
locity of a particle) defined on the phase space
[:=R2XR2={£:=(r,v)]. Of course, when the system is
pressure confined, f must belong to the set

GINL:={fIf 20 ;diamQ, < w ; [ f(E)E=N}, (.1)

where Q fCRf denotes the support of the density of par-
ticles

ny(r)= [ f(&)dv

associated with f and “diam” stands for “diameter” [un-
less otherwise specified, all the integrals with respect to
d& (dr and dv, respectively) are taken over the whole
space ' (R?2 and R2, respectively)] For a system
confined inside the rigid box 2, f is an element of

Fol QN:={fIfESIN], Q,CT}.

(2.2)

(2.3)

(d) Interaction between the particles is mediated by the
mean potential

$p(0):==2 [ f(£)n

d¢'

1
lr—r'|

=—2fnf(r’)ln——l———dr' ,

2.4)
lr—r'|

which satisfies the usual Poisson equation and asymptotic
condition

A¢f=41rnf in Rz 5

lim {¢,(r)—2NInr}=0

r— o

(2.5a)
(2.5b)

(r:=|r|). Note that our definition (2.4) contains an im-
plicit choice of gauge (we have assumed arbitrarily that
the potential created by a particle vanishes at a unit dis-
tance from it). Some properties of the potential ¢, are re-
called in Appendix A.
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B. Definitions

Let us now define a series of functionals of f: (a) kinetic
energy (v:=|v|)

E[f]:=1[vf(£)dE ; (2.6)
(b) potential energy
E,lfl=— [ f(O)f(€)n Ir_lr,‘ dEdE
—_— ’ 1 /.
= fnf(r)nf(r )In =1 drdr’ ; (2.7
(c) total energy
E[f}:=E.[f1tE,[f]; (2.8)
(d) entropy
Sifl=— [ fEmf(EME ; (2.9)

(e) free energy for the system in contact with a heat
bath at temperature 7,

F[T,fl:=E[f]—TS[f];

(f) enthalpy for the system confined by the external
pressure P,

HIP,f1:=E[f]+PlO,|

(2.10)

(2.11)

where | 4| denotes quite generally the measure of the
subset 4 CR?; and (g) free enthalpy for the system
confined by the external pressure P and in contact with a
thermal bath at temperature T,

G[P,T,f]:=E[f]—TS[f]+P|.Qf| . (2.12)

We shall denote by F[Q,N], or F for short ($[N] or G,
respectively), the subset of F,[Q,N] (§,[N]) containing
the distribution functions having finite kinetic energy, po-
tential energy, and entropy. Moreover, to remove an
essential degeneracy existing in the case of a pressure
confined system, for which states corresponding to each
other by spatial translations are equivalent, we impose
the f in § to have their center of mass coinciding with
the origin O of R2. Also, we shall denote by F[Q,N,E],
or F[E] (§[N,H] or §[H], respectively), the subset of
7 (9) containing the distribution functions having the
prescribed value E (H) of the energy (enthalpy). Two
points are worth noticing here.

(i) These sets of functions are never empty. Let indeed
Q be a fixed confining domain, D, be a disk of radius
R, contained in (2, and consider the distribution
function fry:=N(m’R2V?)~! O(R —r) 6(V —v), where
R (0<R <Ry)and ¥V (0< V) are arbitrary parameters, 6
is the usual step function, and the origin O of r has been
chosen at the center of D,. Then it is easy to check that
Sry belongs to F and § and that R and V can be chosen
in such a way that f, belongs either to F[E] for any
fixed value of E or to §[H] for any fixed value of
H (E[fgry]=NV?/4+N*InR —1) can be made indeed
to vary continuously between — o (R—0) and
+ o (V—+w)).

(ii) For any function f of & or &, we have
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Nin

‘EN—llffnflnnfdrfflnflnnﬂdr
f

2l |
<2mE,[f1-S[f1+ —1

(2.13)

by Jensen’s inequality associated with the convex func-
tion x Inx and the przobability measures dr|Q fl‘l (first
inequality) and e~ ™ dv (last inequality), respectively.
Therefore the function of compact support nlnn, is in
L'(R?), which implies [6] that the associated potential ¢ 5
is continuous and thus bounded on Q, (note that the con-
dition |E,[f]| < follows from that result and could
thus be forgotten in the definition of # and &).

C. Problems

Our aim in this paper is to address the following ques-
tions: Is it possible for the system to settle down to an ab-
solutely stable thermodynamic equilibrium in the follow-
ing situations: (a) confinement by a box and thermal con-
tact with a thermostat—the system is seeking for a state
minimizing the free energy F[7, ] in F; (b) confinement
by box and thermal insulation—energy is kept fixed at its
initial value E during any relaxation process and the sys-
tem tries to reach a state maximizing the entropy S| ] in
FLE]; (c) confinement by an external pressure and con-
tact with a thermal bath—the system looks for a state
minimizing the free enthalpy G[P,T,] in &; and (d)
confinement by an external pressure and thermal
insulation—the system evolves at constant enthalpy H
and is seeking a state maximizing the entropy S[ ] in
S[H].

Of course, these problems are strongly related to each
other, as it is evident a priori and will be shown in details
hereafter.

III. TWO USEFUL STATE TRANSFORMS

We introduce in this section two functional transforms
which will be the key tools for deriving our main results
below.

A. Symmetrization of a distribution function

To any function f belonging to &, we associate its “de-
creasing spherical rearrangement” with respect to r,
denoted as f* [16]. For v fixed, f* (r,v) is the essential-
ly unique cylindrically symmetric function defined on R?
which is nonincreasing with r=|r| and which satisfies
[{rlf(r,v))7}|=|{r|f* (r,v))7}| for any 7>0. As it is
well known, the symmetrization mapping f— f* con-
serves the values of all the functionals of the form
f X(f,v)d€. Then, in particular, f* belongs to
F*:=F[Q*,N], where Q* is the disk of center O and ra-
dius R*=(|Q|7~H'*(|Q|=|Q*|=7R*?) and

E[f*]=E.[f],
SUF*1=Ss1/1 .

(3.1

(3.2)
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The potential energy of f, on the contrary, is decreased if

AT
E,[f*]12E,[f]

(see Appendix B). Whence, with the help of Egs. (3.1)
and (3.2),

E[f*]1=E[f],
F[T,f*]=F[T.f],

with equality holding in both relations if and only if
Q=Q*and f=f*.

(3.3)

(3.4)
(3.5)

B. Maxwell-Boltzmann distribution functions

We also associate with any f of F the ‘“Maxwell-
Boltzmann” distribution function

—A[u2/2+¢f(r)]

AN e
fk(r,U)ZZ N — X
2 fe k¢f(r)dr,
Q

where A >0 is an arbitrary parameter (A~ will be called
the temperature of f,) and y , denotes quite generally
the characteristic function of 4 CR2. Owing to the
property of the Newtonian potential recalled in Sec. II B,
it is clear that f, is well defined and belongs to F too;
also n 7, is bounded, and then ¢ 7, is continuously

differentiable in R2. -
A function f is kept invariant by the transform f — f,
if and only if it is of the form

Q(I’) » (3.6)

AN e—A[u2/2+¢f(r)]

& X
2m fﬂe (AT

its potential ¢, thus solving the nonlinear integral equa-
tion

f(r,v)= (3.7

Q(r) N

J

N

b7, —9,)dE<0,

where we have used once more Egs. (AS5) and (A6), and
equality holds if and only if f=f,. Therefore, the trans-
form f—f, decreases the free energy corresponding to
the temperature A~ !, but if f=7,, i.e., if Egs. (3.7)-(3.9)
are satisfied by f and ¢,.

To conclude this section, we quote two important
properties of the functions £, associated with a given f of
F.

(a) S(A):=S[f, ] increases monotonically from — « to
+ oo when A increases from 0 to + «. We have indeed
hm S(A)=+ = (obvious), lim S(A)=— o [by Jensen’s

Pa
1nequahty S(M<N1n(21're|Q|/N)»)] and S'(A)
< —A"!'<0 (by Schwartz’s inequality). Then there is al-
ways a unique value u[ f] of A such that S| f] =S[]‘ﬂ ]-

f e M)fdr]
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o(r)=—2N f e M —dr’

Q lr—r'|
-1
% —A(r) g gt l ‘
[ v, (3.8)
or equivalently the nonlinear Poisson equation
e ~ M)

Ad(r)=4TN———Xq(T) (3.9)

e Xa
f e M) gt
Q

with the asymptotic condition (2.5b).
A simple calculation [using in particular the reciproci-
ty and positivity relations (AS5) and (A6)] gives

E[fy]1=N2A"1, (3.10)
~ 02
E([-ELf1= [ (Fr=0) |5+, |d&
+1 [(Fa=f)8; —¢,)dE
Sf(fk—f) ”72+¢f dE , 3.11)

. On the other hand,

by applying the standard mequahty (resulting from the
convexity of the function xInx)ylny—x Inx
> (y —x)(1+1nx) (x,y >0; xy), we obtain

S[F1-Sf12 = [ (Fi—f)Inf,dE

with equality if and only if n, =n;z

=r[(Fi—1) +¢f dg, (3.12)

with equality if an only if f=f.
Equations (3.11) and (3.12) imply in particular

FL+3 [ (Fa=1N$; —8,)dr—F[A™",f]

(3.13)

(b) There is always a value v[f] of A (u[f]1=v[f]< )

such that E[f,]=E[f]. We have indeed
lim E[f,]=+ o >E[f]and E[f,]<E[f] by using the

previous result and Eqgs. (3.11) and (3.12).

IV. SYSTEM CONFINED BY A BOX
AND IN CONTACT WITH A THERMAL BATH

In this section, we assume that the system is contained
in a rigid box ( and is maintained 1n contact with a
thermal bath at temperature 7=:8"'. We consider in
details only the case where Q is a disk of radius R cen-
tered at the origin, contenting ourselves of making a few
points about the general case.
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A. General statements
and lower bound on the free energy (2 a disk)

Because of the free energy decreasing character of sym-
metrization (which in the case where  is a disk is an
internal mapping of ¥), it is clear that we may restrict
our search for the minimizers of F to the subset F, of F
containing all the functions which are cylindrically sym-
metric in R2. An important point is that the potential of
any function f of ¥, satisfies necessarily the boundary
conditions (Appendix A)

¢,(R)=2NInR , 4.1)
dés 2N
I (py=21L 2
o (R) R’ 4.2)
and it is possible by using Gauss’s theorem to write
N2 L 2
E,[f]=N"inR —— [ |V¢,[%dr . (4.3)

For fin F, ¢, thus belongs to the set of potentials on Q
(9, N:={4l$(0)=4(r);p(R)=2N InR; [ |V¢|’dr
<w}. (4.4)

We note that, by the so-called Moser-Trudinger inequali-
ty [Eq. (B6)], we have for an arbitrary ¢ belonging to 2,

f e—wd,=e—ﬁ¢(mf e Blé—#(R)g,
Q Q

BZ

< CIQI _fnlv¢|2dr] , 4.5)

- RZBN

exp 167

with ¢ an absolute constant (independent of ).

Let us now associate with any f of ¥, the Maxwell-
Boltzmann function f g> Which of course belongs to ¥
too. Using Egs. (3.13) and (4.3), and Gauss’s theorem, we
can write

FIT.Ts1=IIT,8,1= 5 [ IVd,;~4; dr

with equality holding if and only if f=f g JI(T,¢]
denotes here the functional

J[Q,T,N,qi]:=8—11rfﬂquSlzdr—NTln {fne“ﬁ"’dr]

NB

+NTIn
2R BN

) (4.7)

which is well defined on 7. By Eq. (4.5), we have for any
¢in P,

BN 1—BN/2
" $]>NT In -
T¢] 2 [IQI
1 |{_BN 2
+or [1 > fn{vepl dr . 4.8)

Therefore, if

3775

T>T:=N/2 (BN<2), 4.9)

J is bounded from below on 7;, which implies by Eq.
(4.6) that F is bounded from below on F and thus on 7.
When T <T, (BN >2), on the contrary, it turns out
that F can be made as negative as we want by choosing
an appropriate function in F. Let indeed f, be some ar-

bitrary element of #, and set for any a > 1
folr,v)=a%f (ar,v) . 4.10)

It is readily checked that f, belongs to F too and that

F[T,f,]=F[T,f|]+NT(2—BN)na , 4.11)
whence lim F[T,f,]=— , i.e., the free energy can be

made to decrease as much as we want by concentrating
the system indefinitely.

B. Existence and uniqueness
of a free energy minimizer when T'> T, ({2 a disk)

Owing to the result of Sec. III B and the symmetry
considerations of the preceding subsection, it is clear that
if F admits a minimizer f~ in &, it must be of the form
(3.7 (fg =f7), with ¢ ":=¢ - being a solution in 2; of
Eq. (3.9) (and thus a smooth potential) [17]. But it is easi-
ly checked by direct integration [6,13] that this equation
has no solution for T < T, and has the unique solution

$~(N=2N1R +21n

2—BN , BN r?
..__._.___+_____
B

) 2 77| e @12

for T>T.. Moreover, ¢~ is the unique minimizer of
J[T,F]in ?,. This results at once from the fact that Eq.
(3.9) is the Euler-Lagrange equation associated with the
minimization problem for J, this latter being known oth-
erwise [6,13] to admit a solution in P, (see Appendix B 3
for a proof).

Therefore (a) F does not admit any minimizer in F for
T =T, [this result is also a consequence of Eq. (4.11), but
only for T <T,] and (b) for T > T, there is a unique free
energy minimizer given by

NB 1
mR? [(2—BN)+BNr?/R*]?

Xe B2y (1), 4.13)

[ (ro)= (2—pBN)

a solution already given in Refs. [8,18]. Indeed, a minim-
izer of F is necessarily of this form; and f ™ is actually a
minimizer, as in the opposite case, there would exist in &,
a function f such that [by Eq. (4.6)]

JIT, ¢, 1=F[T,f1<F[T,f"1=J[T,¢" 1, 4.14)

in contradiction with ¢~ minimizing J in 2.

It is worth noticing that the calculations developed
above also show that the system does not admit sym-
metric distribution functions f,7f ~ merely extremizing
the free energy. By a standard Euler-Lagrange argument,
f. should be indeed of the form (3.7), with its potential ¢,
a solution in ?; of Eq. (3.9). However, nonsymmetric
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critical points are not excluded (although their existence
seems quite unlikely).

C. Thermodynamic functions ({2 a disk)

We now compute the main thermodynamic functions
associated to the equilibrium distribution function f~
(see also Refs. [5,8]). To simplify the expressions, we set

2 _2T_ T

=L =427 £ .= = 2
6: BN N T V:=|Q|=mR?. (4.15)
A straightforward calculation thus gives for
T>T, (6>1)
E_(T,N):=E.[f ]=1N%, (4.16)
E, (T,V,N):=E,[f"]
N? vV 1
= 1 —_— 2 —_
5 | +6+6°n |1 GH,
(4.17)
E(T,V,N:=E[f ]
N? |4 1
=—11 _ 2 _—
5 n . +260+6n |1 GH,
ST(T,V,N):=S[f ] (4.18)
_ 2,3 4
=N |In(7“e”’)+In |— | +1n6
T
+(260—Din 1—%” , 4.19)
F~(T,V,N):=F|[T,f ]
2
=N (6—1)In 14 +01In(em?)+61nb
2 T
+6(6—1)In 1—%] (4.20)

The variations of E~, S, and F~ as functions of 6
are shown in Fig. 1. An important point to note is the
monotonic increase of E~ and S~ from — o up to + «
when 0 varies from 1 to . F~ increases from the finite
value —N?In(7V e ) (easily shown to be the infimum of F
for T=T,) up to some maximum value, and thus de-
creases to — .

On the other hand, one gets for the “thermodynamic
pressure” of the system [see also the virial theorem (4.28)
below]

PilTV,N):=—2 =2 (—1)="-

=n (R)T=p (R)
(4.21)

(where n~:=n . and p“:=pf~:=%ff_v2dv is the
thermal pressure) and for the density contrast
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6
6—1

n_(0) _
n (R)

n (T, V,N):= (4.22)

As expected on intuitive grounds, the system is “kinet-
ic energy” dominated at high temperature T>>T,,
behaving almost like a perfect gas: E~ ~E  ~NT,
p V=NT, and ™ =~1 (quasiuniformity). At low tem-
perature TR T,, on the contrary, the system is gravity
dominated. When T decreases towards T, the inhomo-
geneity increases, more and more matter concentrating
near the origin [7 ~(6—1)"2>w, p~ —0, and
E™~E, ~(N*/2)ln(6—1)—>—w].

D. System confined in an arbitrary domain

We now present a few remarks about the case where
is an arbitrary domain (Q#Q*). We first note that for
T>T,, Fis bounded from below by F (T,|D|,N), with

(a)
2
o~
z
~
' 1
53]
2 3 3 k3
[¢]
-1
s (b)
= 4
~
]
1]
3t
2
1
2 3 1 s
[¢]
-1.5 (c)
-1.754
o~
Z
>~ -2
I
<%
-2.25
-2.5
-2.75
2 3 4 \5
Gl

FIG. 1. (a) Energy E~, (b) entropy S, and (c) free energy
F~ for a system confined in a disk of unit radius (¥ =) and in
equilibrium with a thermal bath at temperature T, as a function
of 6=T/T,> 1.
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D a disk containing Q (F[Q,N]CFD,N]). A better
lower bound is given by [15]

F~(T,|Q|,N)<F[T,f*1<F[T.f], (4.23)

where use has been made of the general property (3.5) of
symmetrization and of the fact that we can apply the re-
sults of Secs. IV A-IV C to f*, which belongs to
FQ*,N] [with Q* a disk; for T=T,, F~ in Eq. (4.23)

means 1im+ F™]. On the other hand, it is clear that Fis
T— Tc

not bounded from below on F for T < T, (we can apply
the argument of Sec. IV A by choosing f, in F[D,,N],
with D, a disk contained in Q). Therefore

=—ow (T<T,)
>F7(T,|Q,N)>—
(T2T,).
4.24)

F (T,Q,N):= inf F[T,
( ) 7{1(111'1“ [T, f]

The critical temperature T, below which the free energy
is not bounded from below, does not depend on the shape
and size of the box confining the system.

We shall not discuss here the existence of a minimizer
S~ of Fin Ffor T>T,. We just note that, because of
Eq. (3.13), £~ is necessarily of the form (3.7), with its po-
tential ¢~ a solution of the nonlinear integral equation
(3.9) (with A=pB). In fact, it is easy to see that the
Maxwellian factor in f ~ solves the “velocity part” of the
problem and that proving the existence of f ~ amounts to
proving the existence of a function n ~ defined on Q and
minimizing the “macroscopic” free energy

Fo[T,n]:=E,o[n]—TS,[n]

:=——fn(r)n(r’)ln-l—,drdr'+Tfnlnn dr
lr—r'|

(4.25)

in the set N[ Q,N] of all the densities n(r)=>0 on € hav-
ing the right N and finite “potential energy” and “entro-
py.” Once the existence of a minimizer is known, com-
puting it requires solving Eq. (3.8). This may be tried
iteratively, the free energy thus decreasing at each step
because of the properties of the transform: f—f g [see
Eq. (3.13)].

To conclude this brief study of the general case, we
note the two following properties.

(a) Assume that F admits minimizers f; and f, at the
temperatures T'; and T,, respectively, with T, < T, < T,.
Then obviously

E[fT 1-T\S[fy 1SE[f; 1-T\SIf7 ],
E[fy 1=T,8S[f5 1SELfT 1-T,S[f1 1,
which implies in particular (with obvious short notations)

0<T(S; —S7)<E; —E[ <T,(S; —S{). (427

(4.26a)
(4.26b)

Then the energy and the entropy of f, are at least as
large as those of f| .
(b) If £~ is a minimizer, we have by the virial theorem
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(Appendix C)
nrhi=2 | =nr1-Ze =2[ p=(rd)ds, (428)
2T T a0 ’

where p~ is the thermal pressure of the gas defined in
Sec. IV C. If Q is “star shaped” (i.e, r-fi >0 on 9, for
some choice of the spatial origin O), Eq. (4.28) shows at
once that no f~ can exist if T<T,.. If f~ exists above
T,, then the pressure p ~ must tend to zero on 3} when
T—T,*, which, owing to the form of f~, suggests the
formation of a singularity as in the case where () is a
disk. Actually, these arguments also hold true if we con-
sider a mere critical point f, of F, the virial theorem in
the form (4.28) being valid for any isothermal equilibri-
um. Note that if we consider equilibria f, which are rela-
tive minima of F, their nonexistence for T<T, may be
also proven by using the scaling argument presented at
the end of Sec. IV A. We just need to take f, =f, in Eqgs.
(4.10) and (4.11) and to note that, for ) star shaped and
a>1, we have Q.= {r|lar€Q} CQ, whence f, belongs
to ¥ too. Then Eq. (4.11) imposes T > T, if f, is a rela-
tive minimum of the free energy. On the contrary, equili-
bria with T<T, can be easily constructed in special
domains which have some ‘““trapping regions.” Consider,
for instance, a domain  constituted of two disks of ra-
dius R connected by some thin tube. If the distance D
between their centers is much larger than R, it is clear
that we may have at a temperature T such that
T./2<T<T,, an equilibrium which coincides approxi-
mately in each of the disks with the exact symmetric
equilibrium of the form (4.13) corresponding to N /2.

V. BOX-CONFINED ISOLATED SYSTEMS

We now assume that the system, still contained in the
fixed domain (), is fully isolated, its energy thus keeping
the fixed value E. As in the preceding section, we consid-
er mainly the case where () is a disk.

A. Qisadisk

We want to show that the set of admissible functions
F[E] contains a unique entropy maximizer when { is a
disk. In fact, this result follows easily from the con-
clusions of Sec. IV. Let us set indeed

fHE):=f"(T(E), (5.1)

where f 7 (T) [given by Eq. (4.13)] minimizes F[T, ] in F
and T(E)>T. is the unique solution of the equation

E[f (T(E)]=E

(that T (E) exists and is unique for any value of E results
at once from the monotonic increase of E[f ~(T)] from
— oo to +c when T increases from T, to + « ). Then
fT(E) maximizes the entropy in F[E], as we have for
any f in that set

S[fT(E)]—S[f1={F[T(E),f]—F[T(E),f (T(E))]}
X[T(E)]"'>0, (5.3)

(5.2)



3778

and our maximization problem has always at least one
solution.

Let us now prove that f*(E) is the only solution.
From the analysis of Sec. IV we have that f 7(E) is the
only function which (a) is cylindrically symmetric in R2,
and (b) is of the form (4.6), with a potential solving Eq.
(4.8) in ;. Then we just need to show that any entropy
maximizer must satisfy both properties.

(a) Let us assume that there does exists a maximizer
f1, such that (f{)*#f. By the general properties of
symmetrization, we have

SIFT*I=SIfTT, (5.4)
E*=E[(f{)*]<E[f]]. (5.5)

Using both relations and the fact that S[f *(E)] is an in-
creasing function of E (S~ and E ~ increasing monotoni-
cally with ), we can write

SUFHENI<SUTE=SIFT 1=S[(f{ )],

in contradiction with f ¥(E*) maximizing the entropy in
F[E*). Therefore f{ =(f;)* indeed.
(b) For a maximizer f;, we have by Eq. (3.13)

MELFTRI—ELf T BB SSIFT W-SIfT ]

for any A >0, with equality only if f; =(f ,+ )r- Choos-
ing A in such a way that E[(f} ),]=E, which is always
possible as indicated at the end of Sec. III B, we are obvi-
ously in the equality case, and then f; =(f; ), indeed
(of course, the same result can be obtained by a standard
Euler-Lagrange argument). Our uniqueness statement is
thus established.
The equilibrium entropy (Fig. 2)

S*(V,N,E):=S[f T(E)] (5.8)

has the parametric representation S*t=S57(9),
E=E (0) (1<0< ), with S7(0) and E ~(6) given by
Egs. (4.19) and (4.18), respectively. Elimination of 6 can-
not be done explicitly, but it is easy to check that the fol-
lowing inequalities are satisfied:

(5.6)

(5.7

S*(V,N,E)§%+Nln(e1r2) (5.9)
= Sl”
® 5
o
/ 2 4 6 ) 10
E / N2

FIG. 2. Equilibrium entropy S* of an isolated system
confined in a disk of unit radius (¥ =), as a function of the en-
ergy E.
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for E arbitrary and
2me’VE,

S*(V,N,E)<NIn 5
N

(5.10)

for

E,:=E—N%n(R /e)>N?, (5.11)

S behaving actually as the upper bounds (5.9) and (5.10)
in the limits E— — (ST ~2E/N) and E—+ (S
=~ N InE), respectively.

B. ( is an arbitrary domain

When () is an arbitrary domain (Q#Q*), we first note
that entropy is still bounded from above on F[E]
whichever be the value of E, ie, ST(Q,N,E):

=g[fslu E]S[ f]1< . By the properties of symmetriza-

tion and the fact that S ¥ (¥, N, E) defined by Eq. (4.7) is a
monotonically increasing function of E, we have indeed
for any f of F[E] (with V:=|Q*|=|Q]),

S[f1=S[f*1<SHTV,NE[f*])<ST(V,N,E). (5.12)

On the other hand, by arguments already used, it is easy
to show that any entropy maximizer f ¥ —and more gen-
erally any critical point of the entropy in F[ E]—must be
a Maxwell-Boltzmann function for some temperature T
(not necessarily the same for different equilibria). When
) is star shaped, the virial theorem (4.28) shows at once
that T>T,. That this inequality holds necessarily for
(possibly relative) maximum entropy states may also be
seen by adapting the scaling argument of Sec. IV A. f,
being an equilibrium distribution at temperature 7, set
forany a>1and ¥ >0,

fay(t,v)=a*y f, (ar,yv) . (5.13)

Clearly f,, belongs to ¥ (as already noted, for Q star
shaped and > 1, Q ;= {r|lar€Q} CQ). Moreover, if we
impose

E.[f.
Nina= | Ly |l _pl 1 (5.14)
Y N Y
(whence ¥ <1), f,, belongs to F[E] too and
S[fay)=S[f.]—N Ina’y?
=SUf-N |2 [ =1 ]+m?| . 515
T, |y

As we must have S[f,, ] <S[f.] for y <1, Eq. (5.15) im-
poses T >T, indeed. On the contrary, equilibria with
T < T, may exist in some non-star-shaped domain. This
results immediately from the analysis at the end of Sec.
IV D and the fact that any local free energy minimizer is
also a local entropy maximizer (see the argument at the
beginning of Sec. V A).

The problem of the existence of a maximizer £+ will
not be discussed here. We just remark that it amounts to
prove that the functional
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Sy[n]+N1n El%ﬂ(E—Epo[n]) ,
Sl[n,E]:= —o ESEPO[n] E>Ep0[n]
(5.16)

has a maximizer in N[Q,N] (with the notations of Sec.
IV D), the “velocity part” of the problem being solved
here too by the Maxwellian distribution.

V1. SYSTEMS CONFINED
BY AN EXTERNAL PRESSURE

The case where the system is confined by an external
constant pressure P can also be dealt easily by using the
results of Secs. IV and V. Consider first the system in
contact with a thermal bath at temperature T=B71, a
stable equilibrium being thus a global minimizer of the
free enthalpy G[P,T, ] in §. By using once more sym-
metrization, we see immediately that, for any f in &, we
have

G[P,T,f*1=<G[P,T,f] (6.1)

(| f*l =|Q|), and then we can consider our minimiza-

tion problem in the subset §; of § containing all the dis-
tribution functions which are cylindrically symmetric in

G~ (P,T,N):=G[P,T,g "]

NZ
= e 14+201nm+61In6+(6—1)ln

NZ
>G (P,T.,N)= —Tln(ewz) .

The variation of G~ with T is shown in Fig. 3. On the
other hand, it is also obvious that G is not bounded from
below for T'< T, and that it is bounded from below, but
does not reach its infimum, when T=T,.

Let us now consider the case where the system is

0

N\
w
'

o

-2

-44

-6

G~ / N2

-104

FIG. 3. Free enthalpy G~ of a system confined by the exter-
nal pressure P=N2/27 and in equilibrium with a thermal bath
at temperature T, as a function of 6=T7/T, > 1.

N2
21rP(9 1)
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R?2, with Q a disk of center O and radius R;. Moreover,
when T > T, it is quite clear that we have for any func-
tion f of §; and for some function L (see Eq. (4.20))

G[P, T,f]ZPIQf|+F‘(T,|QfI,N)

=PleI—~NT lnIQfI+L(N,T) )

N
12T

(6.2)

with equality if and only if f is the minimizer
F(T,1Q4],N) of F[T, ] in F[Qf,N]. As the right-hand
side of Eq. (6.2) takes its minimum value for

NT

Iﬂf|=V (P,T,N):=—P—

N

1——

oT | 2 (6.3)

we can thus conclude that the free enthalpy is uniquely
minimized in & by the function

g (P,T,N)=f"(T,V~(P,T,N),N) . (6.4)

Note that Eq. (6.3) can also be written p (T, ¥V~ ,N)=P:
As expected a priori, there is pressure balance at the
boundary of the system when equilibrium holds. Also,
the volume of the system increases from O to + « when
T increases from T, to + «. From Egs. (4.20) and (6.3),
we have

0—1
+0(6 l)ln[ P ”

(6.5)

thermally insulated and thus evolves at constant enthalpy
H. By arguments similar to the ones which have allowed
us to pass from the function f~ minimizing the free ener-
gy in F to the function £ maximizing the entropy in
FLE], it is straightforward to show that the entropy is al-
ways uniquely maximized in $[H] by the symmetric
function

g " (H,N,P)=¢g ~(P,T(H,P,N),N), (6.6)

with g~ given by Eq. (6.4) and T(H,P,N) the unique
solution of

(6.7)

1

NZ
1 0 (6—1)

+1
™ orP

2
=52— [39—1+921n

(that this equation for 6=T /T, has a unique solution in
]1, o[ for an arbitrary value of H results at once from
the fact that its right-hand side increases monotonically
from — o to + o when 6 increases from 1 to + « ). The
value of the entropy S *(H,P,N):=S[g*] at equilibrium
is shown in Fig. 4. The volume of the system is given by
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o

5 10 15 20
H / N2
-24 /

FIG. 4. Equilibrium entropy S* of a system confined by the
external pressure P=N?/27 and thermally insulated, as a func-
tion of the enthalpy H.

V*(H,P,N)=V (P,T(H,P,N),N) . (6.8)

It increases from O to + oo when H increases from — o
to + .

VII. CONCLUSION

By making an essential use of symmetrization argu-
ments and of the Moser-Trudinger inequality, we have
shown in this paper the existence and uniqueness of a glo-
bally stable mean field thermodynamic equilibrium for a
2D system constituted of N particles interacting gravita-
tionally and (i) confined either by a rigid circular box or
by an external pressure, and (ii) either maintained in con-
tact with a thermal bath at temperature T>T,=N /2, or
thermally insulated. In any case, the equilibrium corre-
sponds to a cylindrically symmetric Maxwell-Boltzmann
distribution function—the free boundary in the case of a
pressure-confined system adopting spontaneously a circu-
lar shape. The equilibrium exhibits a central condensa-
tion which becomes more and more pronounced when
one considers (depending on the situations) either temper-
ature approaching T, or either energy or enthalpy taking
lower and lower values. For a system in contact with a
thermostat at temperature T < T,, no regular equilibria
(with finite energy and entropy) exist and the natural
state seems to correspond to the whole system being con-
centrated at one point of the domain [1,5,9]. We have
also considered the case of a system confined inside a rig-
id box () of arbitrary shape and shown that, in that situa-
tion too, the free energy is bounded from below if and
only if T = T, (system in contact with a heat bath), while
the entropy is bounded from above whichever the value
of the energy (isolated system). We have also proven
that, if Q) is star shaped, there does not exist any equilib-
rium (stable or unstable) having a temperature T =T .

The qualitative behavior of a 2D system thus appears
to differ quite substantially from that of a 3D system. In
the framework of the phenomenological mean field ap-
proximation, it has been proven indeed by Antonov [19]
(who used earlier work by Emden [20]) and thus by many
other authors (e.g., [2,21,22]), that there is no smooth glo-
bal maximum entropy state for an isolated object of mass

M and energy E confined inside a sphere of radius R. But
for a large enough value of the dimensionless parameter
A:=RE/GyM? (A> —0.335), there is an available iso-
thermal equilibrium which is a local maximum of the en-
tropy if the density contrast n(0)/n(R) <709 and a sad-
dle point of the entropy if n(0)/n(R)>709—in which
case one gets an unstable situation known as the gravo-
thermal catastrophe.

It should be noted, however, that these results have
been obtained in a classical context. The situation is
different in the framework of nonrelativistic quantum
mechanics, where a system of N gravitationally interact-
ing fermions can be shown to have a §round state of finite
energy, the latter scaling like —N7/° [23]. By consider-
ing the limit N — oo with an appropriate scaling of some
physical quantities, Thirring and collaborators [24] were
then able to prove the existence for such a system of a
mean field state, characterized by a Fermi-Dirac density
self-consistently coupled to the mean gravitational poten-
tial by the Poisson equation. Like in the 2D classical case
considered in this paper, a maximum entropy state does
now exist and the standard 3D gravothermal catastrophe
appears to be avoided—in fact as a consequence of Fermi
exclusion principle. But gravothermal catastrophe turns
out to be actually recovered if the mass of the system
exceeds a critical value (the so-called ‘“Chandrasekhar
mass,” of the order of a few solar masses). In that case,
the velocities of most of the particles in the ground state
computed in Thirring’s model exceed the speed of light.
Relativistic effects can no longer be neglected, and taking
them into account results into the nonexistence of an
equilibrium (see, e.g., Ref. [25] for a review).
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APPENDIX A: THE LOGARITHMIC POTENTIAL

Let n(r) be a density of finite total mass N concentrat-
ed inside the bounded domain Q of the plane (n =0 in
R2/Q). Then its associated logarithmic potential [26,27]
in R? is given by

1

=— ' " 1

o(r) 2fnn(r )In T—r] dr (A1)
Asymptotically, one has

#(r) = 2NInr+0(r~ "), (A2)

Vo(r) = %ﬂowz). (A3)

Let n, and n, be two densities on ) with the same N,
and ¢, and ¢, be, respectively, the potentials they create.
Applying Gauss’s theorem in a large disk Dy of radius R
centered at the origin and containing (), we get
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1
2 I, (9801 =4:8,)dr

a¢, a¢,
1, i, |5

fn("1¢2—”2¢1)d1'=

=1
4qr ¥ 3Dy

(A4)
whence, making R — « and using Egs. (A2) and (A3),
= d AS
fﬂn1¢2d1‘ fnnzqs, r (A5)
(the “reciprocity theorem”). Similarly

= [ (n=n)¢,—¢,)dx

= [ V(6,401

1
4

1
= 2 [ 1v@,—¢)Parzo0,

R—>w

d
(2815 (92— y)ds

(A6)
with equality holding only if n,=n, (the “positivity
theorem”).

In the case where (Q is a disk of center 0 and radius R,
and n(r)=n(r), we have by Gauss’s theorem

20089 — 4 [ @ms)n (s)ds= 47N (r) (A7)
dr )
and
—2 [* D s 4animR , r<R
¢(r= 2NInr , R=<r, (A8)

where use has been made of Eq. (A2). On the boundary
0, we have

#(R)=2NInR , (A9)
%‘f(x#%’v (A10)

Note that, in any case, the cylindrically symmetric poten-
tial ¢ is continuously differentiable but may be at the ori-
gin.

APPENDIX B: MATHEMATICAL RESULTS

We first recall two classical inequalities which play a
crucial role in this paper: The Riesz inequality (in Lieb’s
strong form) and the Moser-Trudinger inequality. Thus
we give a proof of a result used in Sec. IV B.

1. Riesz’s inequality in R?

Theorem [16]. Let v be a positive spherically
symmetric strictly decreasing function of R2. For
any two non-negative functions u€LP(R%) and
weELYR?)(p~'+q '=1), we have

Jutw(r—rhw(r)drdr
< furtrwlr—rhw*(rdrdr’, (B

with equality holding if and only if u =u* and w=w"* up
to a translation (of course, u* and w* are, respectively,
the rearrangements of % and w defined in
Sec. III A). [ ]

Let us now assume that ¥ > 0 has a compact support {2
of diameter D and set v(z)=In(2D /t) for 0<t <D and
v (¢) equal to some arbitrary function decreasing from In2
to 0 for D<t<o. Then we have by the previous
theorem (with v = u)

f u(r)u(r')In————drdr’
axaq l I
< u*(ru*(r')In——-drdr’, (B2)
a*xa*” Ir r'|
whence (because f udr=f Lutdr)
fu(r)u(r )lnI idrdr
<fu‘(r)u (r")In drdr', (B3)

lr—r'|
with equality holding if and only if u=u*
translation.

2. Moser and Trudinger’s inequality in R?

Theorem [17,28]. Let Q be a bounded domain of R?
and u be a function of the Sobolev space H) (Q) (i.e.,
vanishing on d(2) satisfying

up to a

J |vuldr<t. (B4)
Then we have

fne"“zdriclﬂl , (BS)
where ¢ is a constant (independent of Q). u

As a simple corollary of this theorem, we have for any
function v EH} (Q)
82
In [ e¥dr<in(c|Q)+—— [ |Vv|%dr, (B6)
o 167 Y a
where 8 is an arbitrary constant. To prove this result, we

define a function u fulfilling the conditions of the theorem
by

) (B7)

v=:u [fanvlzdr ] 172

and we note that v satisfies the elementary inequality [28]
82
< 24 = [ 2 ] .
dv <4mu 6 fQIVU |%dr (B8)

Then we exponentiate and integrate over () both
members of Eq. (B8) and we apply Eq. (BS).

On the other hand, we have for any two functions u
and v belonging to H} (Q)

| [ (e —evar ]

<telaD)' ([ lo—ultar|”

Xexp

f |Vv|2dr+—f |Vu|2dr]. (B9)
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This relation is proven by using the elementary inequality

(B10)

lev—e¥| < v —ulel!tlul

and twice Schwartz’s inequality and Eq. (B6) above.
3. Proof of the existence of a minimizer of J[ T, ¢]

We first prove the following result (which has already
appeared in the literature [6,13], but only with very
sketchy proofs

Theorem. Let Q be a bounded domain of R2. Then the
functional

Jo[v]:=§l7;fn|Vv|2dr—NT1n [fne ‘ﬁvdr} (B11)

admits a minimizer in H{ (Q) when B~ '=T>T,
J

<L g :
Tolv ™15 S o [IQIVU Pdr— lim fQIVvk|dr]

— — B _ _ -1
+ {im NTln[H- [fﬂe ﬂ"dr—fne"ﬂv dr] Uﬂe—au d,] ]50’

k— o0

the first term in the second member of Eq. (B13) being
nonpositive as a consequence of the weak lower semicon-
tinuity of the first term on the right-hand side of Eq.
(B12) [17], while the second one vanishes owing to Eq.
(B9), the convergence of v, to v~ in L% (Q), and the
boundedness of v, in Hy (Q). Thus Jo[v " ]=Jg and v~
is a minimizer of J. ]

Consider now the case where ( is a disk. Then, by a
symmetrization argument, we can conclude that there is
a cylindrically symmetric minimizer v ~. On the other
hand, the function ® ":=v~ +2N InR is clearly a minim-
izer of J in P, as J defined on 2N InR +H| (Q) and J,
defined on H} (Q) differ only by constant terms.

APPENDIX C: THE VIRIAL THEOREM

The virial theorem for 3D systems is a well known and
widely used integral equality [29]. Here we derive a form
of this theorem applying to 2D equilibria occupying some
domain Q. Although our result is likely to be known, we
have not found any reference to it in the literature. For
simplicity, we consider an equilibrium described by a dis-
tribution function f, which is a function of the only ener-
gy of a particle [i.e., f,=f,(v2/2+¢,), with ¢e:=¢fe].

For such an equilibrium, we have obviously

Vp,=—n,Vé,=——V.1V4,8Ve, — ALY S
pe e e 477_ e (4 2 ’
where I:=[8/]
pe=%[vif.dv (C2)

is the thermal pressure of the particles, and use has been
made of Poisson’s equation (2.5a) to get the last equality.
Multiplying Eq. (C1) by r, integrating the result over Q
and applying Gauss’s theorem, we obtain eventually

J.J ALY 49
:=N/2. n
Proof. By Eq. (B6), we have for T > T,
Jo[v]> — 1—£ J I¥v|2dr—NT n(c|Q))
0t g T Q
> —NTIn(c|Q]), (B12)
and Jy[v] has a finite largest lower bound

Jo :=ian(1) «@Jolv]. Then consider a minimizing se-

quence {v,} in H} (Q) (i.e., a sequence such that
lim, _, Jolvg]=Jo ), with Jg <Jy[v,]<Jy +1, say.
By Eq. (B12), {v,} is uniformly bounded in H}(Q). Then
a subsequence of it (still denoted as {v,}) converges
weakly in H} (Q) and strongly in L%(Q) to a function v ~
of H) (Q) [17]. Of course J,[v ™ ]1>J, while, on the
other hand, Jo[v ™ ]=J; as

(B13)

f
2fnpedr= fmper-ﬁ ds

1 A
+o- 1 l(r-Vq&e )(@-V,)

Ivg.|?
2

(r-) (ds , (C3)

where 1 is the external normal to 9Q.

Let us now consider a disk Dy of center O and of radius
large enough for Dy containing Q. In Dg /Q, the vacu-
um gravitational field still satisfies Eq. (Cl) (with
p.=n,=0) and thus we get, by following once more the
procedure leading to Eq. (C3),

[ {(xVe,)(@-Ve,)— Vel a) la
a0 .)(n-Vg, 5 (rh) (ds
2 2
_ R? par || 09, 1 |9¢.
=& { | "7 e | |RO046
= 47N?, (C4)
R—)oo

where (7,0) denote polar coordinates and the last equality
has been obtained by using the asymptotic expression for
Vé,, which guarantees that limg_,  |R3¢,/dr|=2N
while limg _, |34, /36| =0 (Appendix A).

Combining Egs. (C3) and (C4), we obtain the sought
expression

2f Qp,_,dr=N2+ S | periids . (C5)

In the case where the equilibrium corresponds to a
Maxwell-Boltzmann distribution function with a temper-
ature T, we have p, =n,T and Eq. (C5) gives

_BN _ "
NT |1-5 =iT [ nrdids.  (C6)

=NT |1 L.
- T
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